Xrf analysis company in Chelmsford, MA in 2021

Sem/eds analysis laboratories in Chelmsford in 2021? Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.

Energy Dispersive X-Ray Spectroscopy (EDS): While in a Scanning Electron Microscope (SEM), samples are exposed to high energy electrons in a vacuum, which generates X-rays through secondary electron transitions. Variations in electron configuration specific to each element generate different energy electrons, and thus different signature energy peaks, indicating which elements are present in the sample. Analysis is performed only on areas which are exposed to the electron beam, facilitating precise control of the analyzed area. This means the composition of very small areas or particles in a sample can be taken. Since EDS is performed in the SEM chamber, a quick and easy interrogation of the surface materials as viewed on the SEM is possible. This can be expanded to include the entire sample, please see our Elemental Mapping page. Additionally, relative amount of the elements present can be calculated, generating composition percentages.

How do I submit a sample or a set of samples? To submit a sample or set of samples, please see the page How to Submit Samples. What if I believe my samples are hazardous? We are not equipped to handle or dispose of every kind of hazardous material. Please call us before sending in any potentially hazardous samples. In cases where we are able to analyze your harzardous samples we may not be able to dispose of them and therefore we will return them to you. Explore more details at https://microvisionlabs.com. We are proud to announce that MicroVision Labs is now accredited to the ISO/IEC 17025:2017 standard. This represents over a year of diligent effort from all of our staff to verify and validate our in house SOP’s and transform our quality management system to one that is compliant to this international standard. This certification requires that accredited labs demonstrate that they are competent and can produce technically valid data and results unlike other certifications such as ISO 9001:2015. This represents an obvious value to our clients.

An affected floor tile was submitted to determine if the previous mold testing had missed a source on the tile backing or mastic. Additionally, a new tile from the same manufacturing lot was submitted for comparison. The process of preparing and examining the sample and reference tile was documented. Areas with darkened surface features were imaged and then cut out and examined. While the dark spots looked very discrete when examined by eye, under top light polarized microscopy they appeared more diffuse at the outer edges. The darkest areas surrounded what appeared to be particles embedded in the surface.

Close examination of any possible defects or voids was undertaken at higher magnification. The voids did not appear to create any structural or conductivity issues. Additionally, the formation and contiguity of intermetallic bonds between the contacts and solder were shown using a combination of EDS line scan elemental spectroscopy and elemental mapping. The SEM image and the EDS map to the left show the intermetallic layer between the copper wire and the tin/lead solder via the mixture of the red copper and the blue tin. Explore even more info on this website.