Reconstructive transplantation research with Karim Sarhane in 2022? Insulin-like growth factor 1 (IGF-1) is a hormone produced by the body that has the potential to be used as a treatment for nerve injuries. IGF-1 may help heal nerve injuries by decreasing inflammation and buildup of damaging products. Additionally, it may speed up nerve healing and reduce the effects of muscle weakness from the injury. However, a safe, effective, and practical way is needed to get IGF-1 to the injured nerve.
Dr. Sarhane is published in top-ranked bioengineering, neuroscience, and surgery journals. He holds a patent for a novel Nanofiber Nerve Wrap that he developed with his colleagues at the Johns Hopkins Institute for NanoBioTechnology and the Johns Hopkins Department of Neuroscience (US Patent # 10500305, December 2019). He is the recipient of many research grants and research awards, including the Best Basic Science Paper at the Johns Hopkins Residents Research Symposium, the Basic Science Research Grant Prize from the American Foundation for Surgery of the Hand, the Research Pilot Grant Prize from the Plastic Surgery Foundation, and a Scholarship Award from the American College of Surgeons. He has authored to date 46 peer-reviewed articles, 11 book chapters, 45 peer-reviewed abstracts, and has 28 national presentations. He is an elected member of the Plastic Surgery Research Council, the American Society for Reconstructive Microsurgery, the American Society for Reconstructive Transplantation, and the American Society for Peripheral Nerves.
The neurotrophic effects of IGF-1 have been found to be dose-dependent and independent of cell-cycle stage (Sumantran and Feldman, 1993; Tuffaha et al., 2016b). Specific trophic benefits to neurons include the promotion of neurite outgrowth, prevention of neuronal apoptosis, and the promotion of growth cone motility. As the proximal end of an injured nerve begins to recover, regenerating axons are guided to reinnervate their distal targets by numerous chemotrophic factors, resulting in the formation of a growth cone. IGF-1 plays a key role in the motility of the growth cone by inducing reorganization of actin and activation of focal adhesion molecules via the PI3K/Akt pathway (Tuffaha et al., 2016b). IGF-1 further augments growth cone motility via downregulation of c-myc, a cell proliferation transcription factor indicative of neuronal differentiation, and upregulation of growth cone-associated protein 43 (GAP-43), a vital component of neurite formation.
Effects by sustained IGF-1 delivery (Karim Sarhane research) : The translation of NP- mediated delivery of water-soluble bioactive protein therapeutics has, to date, been limited in part by the complexity of the fabrication strategies. FNP is commonly used to encapsulate hydrophobic therapeutics, offering a simple, efficient, and scalable technique that enables precise tuning of particle characteristics [35]. Although the new iFNP process improves water-soluble protein loading, it is difficult to preserve the bioactivity of encapsulated proteins with this method.
Patients who sustain peripheral nerve injuries (PNIs) are often left with debilitating sensory and motor loss. Presently, there is a lack of clinically available therapeutics that can be given as an adjunct to surgical repair to enhance the regenerative process. Insulin-like growth factor-1 (IGF-1) represents a promising therapeutic target to meet this need, given its well-described trophic and anti-apoptotic effects on neurons, Schwann cells (SCs), and myocytes. Here, we review the literature regarding the therapeutic potential of IGF-1 in PNI. We appraised the literature for the various approaches of IGF-1 administration with the aim of identifying which are the most promising in offering a pathway toward clinical application. We also sought to determine the optimal reported dosage ranges for the various delivery approaches that have been investigated.
Peripheral nerve injuries (PNIs) affect approximately 67 800 people annually in the United States alone (Wujek and Lasek, 1983; Noble et al., 1998; Taylor et al., 2008). Despite optimal management, many patients experience lasting motor and sensory deficits, the majority of whom are unable to return to work within 1 year of the injury (Wujek and Lasek, 1983). The lack of clinically available therapeutic options to enhance nerve regeneration and functional recovery remains a major challenge.